#Combinations, #Rotation, #Computational Thinking
The problem was adapted from the 'Ice Cream Cake' problem in Peter Winkler's 'Mathematical Mind Benders' (p111 with solution on pp115-118), and via Stan Wagon's take on it in Gil Kalai's blog. It's likely origin was as problem 31.2.8.3 in Olympiad 31 (1968) Moscow Mathematical Olympiads (p90).
SPOILER/SOLUTION:
The values of \(f\left( \theta \right)\) for \(\left\{ {\theta |\theta \in \mathbb{N},1 \le \theta \le 360} \right\}\) can be generated thus:
\[\begin{array}{l}Let\;k = \left\lceil {\frac{{360}}{\theta }} \right\rceil \\\\f\left( \theta \right) = 2k\;for\;\left\{ {k|k = \frac{{360}}{\theta },1 \le \theta \le 360} \right\}\\\\f\left( \theta \right) = 2k\left( {k - 1} \right){\rm{ for }}\left\{ {k|k \ne \frac{{360}}{\theta },1 \le \theta \le 360} \right\}\end{array}\]
Giving \(f\left( {181^\circ } \right) = 4\) and \(f\left( \theta \right)\) for all \(\left\{ {\theta |\theta \in \mathbb{N},1 \le \theta \le 360} \right\}\):
| θ | f(θ) | 
|---|---|
| 1 | 720 | 
| 2 | 360 | 
| 3 | 240 | 
| 4 | 180 | 
| 5 | 144 | 
| 6 | 120 | 
| 7 | 5304 | 
| 8 | 90 | 
| 9 | 80 | 
| 10 | 72 | 
| 11 | 2112 | 
| 12 | 60 | 
| 13 | 1512 | 
| 14 | 1300 | 
| 15 | 48 | 
| 16 | 1012 | 
| 17 | 924 | 
| 18 | 40 | 
| 19 | 684 | 
| 20 | 36 | 
| 21 | 612 | 
| 22 | 544 | 
| 23 | 480 | 
| 24 | 30 | 
| 25 | 420 | 
| 26-27 | 364 | 
| 28-29 | 312 | 
| 30 | 24 | 
| 31-32 | 264 | 
| 33-35 | 220 | 
| 36 | 20 | 
| 37-39 | 180 | 
| 40 | 18 | 
| 41-44 | 144 | 
| 45 | 16 | 
| 46-51 | 112 | 
| 52-59 | 84 | 
| 60 | 12 | 
| 61-71 | 60 | 
| 72 | 10 | 
| 73-89 | 40 | 
| 90 | 8 | 
| 91-119 | 24 | 
| 120 | 6 | 
| 121-179 | 12 | 
| 180-359 | 4 | 
| 360 | 2 | 

 
No comments:
Post a Comment