#Combinations, #Rotation, #Computational Thinking
The problem was adapted from the 'Ice Cream Cake' problem in Peter Winkler's 'Mathematical Mind Benders' (p111 with solution on pp115-118), and via Stan Wagon's take on it in Gil Kalai's blog. It's likely origin was as problem 31.2.8.3 in Olympiad 31 (1968) Moscow Mathematical Olympiads (p90).
SPOILER/SOLUTION:
The values of \(f\left( \theta \right)\) for \(\left\{ {\theta |\theta \in \mathbb{N},1 \le \theta \le 360} \right\}\) can be generated thus:
\[\begin{array}{l}Let\;k = \left\lceil {\frac{{360}}{\theta }} \right\rceil \\\\f\left( \theta \right) = 2k\;for\;\left\{ {k|k = \frac{{360}}{\theta },1 \le \theta \le 360} \right\}\\\\f\left( \theta \right) = 2k\left( {k - 1} \right){\rm{ for }}\left\{ {k|k \ne \frac{{360}}{\theta },1 \le \theta \le 360} \right\}\end{array}\]
Giving \(f\left( {181^\circ } \right) = 4\) and \(f\left( \theta \right)\) for all \(\left\{ {\theta |\theta \in \mathbb{N},1 \le \theta \le 360} \right\}\):
θ | f(θ) |
---|---|
1 | 720 |
2 | 360 |
3 | 240 |
4 | 180 |
5 | 144 |
6 | 120 |
7 | 5304 |
8 | 90 |
9 | 80 |
10 | 72 |
11 | 2112 |
12 | 60 |
13 | 1512 |
14 | 1300 |
15 | 48 |
16 | 1012 |
17 | 924 |
18 | 40 |
19 | 684 |
20 | 36 |
21 | 612 |
22 | 544 |
23 | 480 |
24 | 30 |
25 | 420 |
26-27 | 364 |
28-29 | 312 |
30 | 24 |
31-32 | 264 |
33-35 | 220 |
36 | 20 |
37-39 | 180 |
40 | 18 |
41-44 | 144 |
45 | 16 |
46-51 | 112 |
52-59 | 84 |
60 | 12 |
61-71 | 60 |
72 | 10 |
73-89 | 40 |
90 | 8 |
91-119 | 24 |
120 | 6 |
121-179 | 12 |
180-359 | 4 |
360 | 2 |
No comments:
Post a Comment