A number is said to be Perfect if it is equal to the sum of its proper positive factors, i.e. the sum of its factors excluding the number itself. Summing

*all*of the factors of a number \(n\)

*— i.e. including the number \(n\) itself — is known as the sum-of-divisors function:*

\[\sigma \left( n \right) = \sum\limits_{d\left| n \right.} d \]

A number \(n\) is thus said to be Perfect when \(\sigma \left( n \right)\) = 2n. For example, the factors of 28 — 1, 2, 4, 7, 14 and 28 — sum to 28 + 28 = 56, thus \(\sigma \left( {28} \right)\) = 2 \(\times \) 28 and so 28 is a Perfect number. In contrast, and by way of illustration, the factors of 42 — 1, 2, 3, 6, 7, 14, 21 and 42 — sum to 96, or 2.2857... \(\times \) 42, thus \(\sigma \left( {42} \right) \ne\) 2 \(\times \) 42 and so 42 is not a Perfect number. In fact, 42 is said to be an Abundant number because the sum of its proper positive divisors is greater than the number itself, i.e. \(\sigma \left( n \right) > 2n\). When the sum of a number's proper positive divisors is less than the number itself, i.e. \(\sigma \left( n \right) < 2n\), the number is said to be Deficient. For example, the factors of 50 — 1, 2, 5, 10, 25 and 50 — sum to 93, or 1.86 \(\times \) 50, and thus \(\sigma \left( {50} \right)\) < 2 \(\times \) 42. As such:

\[\begin{array}{l}\sigma \left( n \right) < 2n \Rightarrow n\;{\rm{is}}\;{\rm{deficient}}\\\sigma \left( n \right) = 2n \Rightarrow n\;{\rm{is}}\;{\rm{perfect}}\\\sigma \left( n \right) > 2n \Rightarrow n\;{\rm{is}}\;{\rm{abundant}}\end{array}\]

Perfect numbers have intrigued us since Euclid, who observed via Proposition 36 in Book IX of his

*Elements*that a number of the form (2\(^{p - 1}\))(2\(^p\) − 1) is a perfect number whenever 2\(^p\) − 1 is prime (i.e. what subsequently became known as a Mersenne prime) [1]. The fact that every

*even*perfect number is of this type, i.e. that every

*even perfect number can be written in the form (2\(^{p - 1}\))(2\(^p\) − 1) whenever 2\(^p\) − 1 is prime, was proposed by René Descartes in his famed correspondence with Marin Mersenne (specifically in his letter to Mersenne of 15 November 1638) [2], and later proven in 1849 by Leonhard Euler [3]. Descartes was, indeed, 'among the first to consider the existence of odd perfect numbers' (Greathouse and Weisstein, 2012).*

As of writing, of the fifty perfect numbers that have been found, all are even, and it is not known if there are infinitely many or, indeed, whether any odd perfect numbers exist — although Pascal Ochem and Michaël Rao showed (2012) that no number up to 10\(^{1500}\) is an odd perfect number.

One number

*has*been found, however, that

*would*have been an odd perfect number if only one of its factors was prime rather than a 'spoof prime' (i.e. a composite number wrongly assumed to be prime). This number — 198,585,576,189 — was found in 1638 by Descartes, documented in his 15 November letter to Mersenne, and is known as a Descartes Number, or, as an 'odd spoof perfect number' (note that the spoof prime in question is 22021, i.e. 19\(^2\) \(\times \) 61).

\[198,585,576,189 = {3^2} \times {7^2} \times {11^2} \times {13^2} \times 22021\]

Descartes showed that if 22021 was prime, the proper factors of 198,585,576,189 [4] would sum to 198,585,576,189 — making it the only odd perfect number ever found. As it is, because 22021 is not prime, or because 22021 is a spoof prime, the proper factors of 198,585,576,189 do not sum to 198,585,576,189 (they actually sum to 227,441,894,589). This makes 198,585,576,189 an odd

*spoof*perfect number, which in itself is the only such number ever found!

To elaborate: Descartes showed that an equivalence to the sum-of-divisors function using the prime factorisation of a number is the following [5]:

\[\sigma \left( n \right) = \prod\limits_{{p^a}\left\|{\;n} \right.} {\frac{{{p^{a + 1}} - 1}}{{p - 1}}} {\rm{ }}\]

where \(p\) is a distinct prime factor. This means that a number's factors can be summed using only the number's prime factors. Taking 28 again as an example, we have seen that it is a perfect number because

\[\sigma \left( 28 \right) = \sum\limits_{d\left| 28 \right.} d = 1 + 2 + 4 + 7 + 14 + 28 = 56 = 2n\]

We can also observe this result using the prime factors of 28, i.e. 2\(^2 \times \) 7:

\[\prod\limits_{{p^a}\left\|{\;n} \right.} {\frac{{{p^{a + 1}} - 1}}{{p - 1}}} = \frac{{{2^{2 + 1}} - 1}}{{2 - 1}} \times \frac{{{7^{1 + 1}} - 1}}{{7 - 1}} = \frac{7}{1} \times \frac{{48}}{6} = 56 = 2n\]

And so, similarly, the sum of the divisors of Descartes' number:

\[\begin{array}{c}\begin{align}\sigma \left( 198,585,576,189 \right) &= \prod\limits_{{p^a}\left\| {\;n} \right.} {\frac{{{p^{a + 1}} - 1}}{{p - 1}}} \\ \\&= \frac{{{3^{2 + 1}} - 1}}{{3 - 1}} \times \frac{{{7^{2 + 1}} - 1}}{{7 - 1}} \times \frac{{{{11}^{2 + 1}} - 1}}{{11 - 1}} \times \frac{{{{13}^{2 + 1}} - 1}}{{13 - 1}} \times \frac{{{{22021}^{1 + 1}} - 1}}{{22021 - 1}}\\ \\&= 13 \times 57 \times 133 \times 183 \times 22022\\ &= 13 \times \left( {3 \times 19} \right) \times \left( {7 \times 19} \right) \times \left( {3 \times 61} \right) \times \left( {2 \times 7 \times 11 \times 11 \times 13} \right)\\ &=2 \times {3^2} \times {7^2} \times {11^2} \times {13^2} \times \left( {{{19}^2} \times 61} \right)\\ &= 2 \times {3^2} \times {7^2} \times {11^2} \times {13^2} \times 22021\\ &= 2 \times 198,585,576,189\end{align}\end{array}\]

Hence, if 22021 were prime rather than 19\(^2\) \(\times \) 61, Descartes' number 198,585,576,189 would be an odd perfect number because \(\sigma \left( n \right)\) = 2n.

**Notes, References &**

**Links:**

[1] The first four perfect numbers — 6, 28, 496 and 8128 — were known to early Greek mathematics. See this for a full list of known Perfect numbers. See also these typically lovely Numberphile videos with Matt Parker on 'Perfect Numbers and Mersenne Primes' and 'Perfect Number Proof'.

[2] Descartes wrote: 'Mais je pense pouvoir démontrer qu'il n'y en a point de pairs qui soient parfaits, excepté ceux d'Euclide; et qu'il n'y en a point aussi d'impairs, si ce n'est qu'ils soient composés d'un seul nombre premier, multiplié par un carré dont la racine soit composée de plusieurs autres nombres premiers. Mais je ne vois rien qui empêche qu'il ne s'en trouve quelques-uns de cette sorte: car, par exemple, si 22021 était nombre premier, en le multipliant par 9018009, qui est un carré dont la racine est composée des nombres premiers 3, 7, 11 et 13, on aurait 198.585.576.189, qui serait nombre parfait. Mais, quelque méthode dont on puisse user, il faut beaucoup de temps pour chercher ces nombres, et peut-être que le plus court a plus de 15 ou 20 notes.'

And in English: 'But I think I can show that there are no perfect peers except those of Euclid; and that there are no other odd ones, except that they are composed of a single prime number, multiplied by a square whose root is composed of several other prime numbers. But I do not see anything that prevents some of this kind from occurring: for example, if 22021 was prime number, multiplying it by 9018009, which is a square whose root is made up of numbers first 3, 7, 11 and 13, we would have 198,585,576,189, which would be perfect number. But, whatever method you can use, it takes a long time to look for these numbers, and perhaps the shorter one has more than 15 or 20 notes.'

[3] This theorem is now known as the Euclid-Euler Theorem. For an outline of the proof, see, for example, Voight (1998, p5).

[4] If you're interested, the factors of 198,585,576,189 are: 1, 3, 7, 9, 11, 13, 19, 21, 33, 39, 49, 57, 61, 63, 77, 91, 99, 117, 121, 133, 143, 147, 169, 171, 183, 209, 231, 247, 273, 361, 363, 399, 427, 429, 441, 507, 539, 549, 627, 637, 671, 693, 741, 793, 819, 847, 931, 1001, 1083, 1089, 1159, 1183, 1197, 1281, 1287, 1463, 1521, 1573, 1617, 1729, 1859, 1881, 1911, 2013, 2223, 2299, 2379, 2527, 2541, 2717, 2793, 2989, 3003, 3211, 3249, 3477, 3549, 3843, 3971, 4389, 4693, 4697, 4719, 4851, 5187, 5551, 5577, 5733, 5929, 6039, 6897, 7007, 7137, 7381, 7581, 7623, 8113, 8151, 8281, 8379, 8723, 8967, 9009, 9633, 10241, 10309, 10431, 10647, 11011, 11913, 12103, 12749, 13013, 13167, 14079, 14091, 14157, 15067, 15561, 16093, 16653, 16731, 17689, 17787, 19019, 20449, 20691, 21021, 22021, 22143, 22477, 22743, 24339, 24453, 24843, 26169, 26901, 27797, 28899, 29887, 30723, 30927, 32851, 32879, 33033, 35321, 35739, 36309, 38247, 38857, 39039, 42237, 42273, 43681, 45201, 48279, 49959, 51623, 51667, 53067, 53361, 56791, 57057, 61009, 61061, 61347, 63063, 66063, 66429, 67431, 72163, 73017, 74529, 77077, 78507, 83391, 89243, 89661, 91091, 92169, 92781, 95953, 98553, 98637, 99099, 105469, 105963, 108927, 112651, 113399, 114741, 116571, 117117, 131043, 133133, 135603, 140239, 143143, 144837, 154147, 154869, 155001, 157339, 159201, 165737, 170373, 171171, 183027, 183183, 184041, 194579, 195871, 198189, 202293, 209209, 216489, 229957, 231231, 242231, 247247, 250173, 267729, 268983, 273273, 286273, 287859, 295659, 295911, 305767, 316407, 317889, 337953, 340197, 349713, 361361, 361669, 388531, 393129, 399399, 420717, 427063, 427427, 429429, 462441, 464607, 465003, 472017, 497211, 505141, 511119, 549081, 549549, 567853, 583737, 587613, 624701, 627627, 649467, 671099, 671671, 689871, 693693, 726693, 738283, 741741, 793793, 803187, 819819, 858819, 863577, 917301, 949221, 981673, 1002001, 1013859, 1020591, 1079029, 1084083, 1085007, 1160159, 1165593, 1198197, 1247389, 1262151, 1281189, 1282281, 1288287, 1371097, 1387323, 1416051, 1464463, 1491633, 1515423, 1695617, 1703559, 1730729, 1751211, 1762839, 1823107, 1874103, 1882881, 2003911, 2013297, 2015013, 2069613, 2140369, 2154581, 2180079, 2214849, 2225223, 2381379, 2529527, 2576457, 2664541, 2719717, 2751903, 2945019, 2989441, 3006003, 3149003, 3237087, 3252249, 3255021, 3480477, 3496779, 3721549, 3742167, 3843567, 3846843, 3974971, 4113291, 4393389, 4546269, 4697693, 4701697, 5086851, 5110677, 5192187, 5469321, 5556551, 5622309, 6011733, 6039891, 6045039, 6421107, 6463743, 6644547, 6871711, 7144137, 7382089, 7588581, 7993623, 8121113, 8159151, 8731723, 8835057, 8968323, 9018009, 9447009, 9597679, 9711261, 10441431, 11164647, 11226501, 11869319, 11924913, 12339873, 12761749, 13180167, 14027377, 14093079, 14105091, 15082067, 15260553, 15576561, 16407963, 16669653, 18035199, 18651787, 19038019, 19263321, 19391229, 20615133, 22043021, 22146267, 22765743, 23700391, 23980869, 24363339, 24477453, 26050843, 26195169, 26904969, 27824797, 28341027, 28793037, 32883851, 33493941, 34639033, 35607957, 35774739, 38285247, 40937039, 42082131, 42279237, 42315273, 45246201, 50008959, 51674623, 55955361, 57114057, 61122061, 61845399, 66129063, 66438801, 71101173, 73090017, 78152529, 78585507, 83474391, 86379111, 89332243, 98651553, 103917099, 105574469, 106823871, 114855741, 122811117, 126246393, 130562509, 135738603, 154301147, 155023869, 165902737, 167866083, 171342171, 182355901, 183366183, 198387189, 213303519, 234457587, 242473231, 250423173, 267996729, 286559273, 295954659, 311751297, 316723407, 361722361, 368433351, 391687527, 450307429, 462903441, 465071607, 497708211, 547067703, 550098549, 727419693, 803990187, 859677819, 950170221, 1085167083, 1161319159, 1175062581, 1350922287, 1388710323, 1493124633, 1641203109, 1697312617, 2005914911, 2182259079, 2579033457, 3152152003, 3255501249, 3483957477, 4052766861, 5091937851, 6017744733, 9456456009, 10451872431, 15275813553, 18053234199, 22065064021, 28369368027, 66195192063, 198585576189. (Found using this Wolfram Alpha Widget.)

Abundant Number (n.d.). In

*Wikipedia*. Retrieved August 2018 from https://en.wikipedia.org/wiki/Abundant_number

*Descartes Numbers*. Retrieved July 2018 from

https://pdfs.semanticscholar.org/cb02/869f21a4dddd9dacb2c8a31ff3672bdbfff1.pdf

Deficient Number (n.d.). In

*Wikipedia*. Retrieved August 2018 from https://en.wikipedia.org/wiki/Deficient_number

Divisor Function (n.d.). In

*Wikipedia*. Retrieved August 2018 from https://en.wikipedia.org/wiki/Divisor_function

*Circulation of Knowledge and Learned Practices in the 17th-century Dutch Republic*Transcription. Retrieved July 2018 from http://ckcc.huygens.knaw.nl/epistolarium/letter.html?id=desc004/3184

Euclid-Euler Theorem (n.d.). In

*Wikipedia*. Retrieved August 2018 from https://en.wikipedia.org/wiki/Euclid%E2%80%93Euler_theorem

*Commentationes arithmeticae*Vol. 2, pp. 627-636. Retrieved July 2018 from http://eulerarchive.maa.org//docs/originals/E798.pdf

Greathouse, C. and Weisstein, E.W. "Prime Counting Function." From

*MathWorld--A Wolfram Web Resource.*Retrieved February 2018 from http://mathworld.wolfram.com/OddPerfectNumber.html

Joyce, D.E. 'Euclid's Elements: Book IX, Propostion 36', Department of Mathematics and Computer Science, Clark University. Retrieved August 2018 from

https://mathcs.clarku.edu/~djoyce/elements/bookIX/propIX36.html

List of Perfect Numbers (n.d.). In

*Wikipedia*. Retrieved August 2018 from https://en.wikipedia.org/wiki/List_of_perfect_numbers

O'Connor, J.J. and Robertson, E.F. (1999, January). 'Euclid of Alexandria', School of Mathematics and Statistics, University of St Andrews. Retrieved August 2018 from http://www-groups.dcs.st-and.ac.uk/history/Biographies/Euclid.html

O'Connor, J.J. and Robertson, E.F. (2005, August). 'Marin Mersenne', School of Mathematics and Statistics, University of St Andrews. Retrieved July 2018 from http://www-groups.dcs.st-and.ac.uk/history/Biographies/Mersenne.html

O'Connor, J.J. and Robertson, E.F. (2014, November). 'René Descartes', School of Mathematics and Statistics, University of St Andrews. Retrieved July 2018 from http://www-history.mcs.st-andrews.ac.uk/Biographies/Descartes.html

O'Connor, J.J. and Robertson, E.F. (2018, January). 'Perfect Numbers', School of Mathematics and Statistics, University of St Andrews. Retrieved July 2018 from http://www-groups.dcs.st-and.ac.uk/history/HistTopics/Perfect_numbers.html

Voight, J. (1998). Perfect Numbers: An Elementary Introduction. Retrieved July 2018 from https://math.dartmouth.edu/~jvoight/notes/perfelem.pdf

This comment has been removed by a blog administrator.

ReplyDeleteCheck out the free monthly calendar 2019

ReplyDeleteMathematics is my favorite subjects ever. I see this post and a valuable details you provided in it. I really appreciate it, thanks for sharing it. Get more details about Mathematics Lab Equipment Supplier.

ReplyDeleteNeeded help in Maths, and then take help @ https://www.mathprodigies.com/conquer-2018

ReplyDeleteBlutick

ReplyDeleteMaths With Confidence

Online Maths Teaching

This notes is a blessing for all the science students who opted Math as a subject. I strongly recommend to all the concerned students to go through the notes.

ReplyDeleteHome Tutors in Delhi | Home Tuition ServiceThanks a lot for sharing this blog. I was searching for this topic for a while. Glad that I came across your blog. Great effort. Do share more.

ReplyDeleteTally Course in Chennai

Tally Training in Chennai

Mobile Testing Training in Chennai

Mobile Testing Course in Chennai

Manual Testing Training in Chennai

Manual Testing Courses in Chennai

Tally Course in Adyar

Tally Course in Velachery

ReplyDeleteThanks For Sharing...

Coaching Centre for PCS in Meerut

List of Best IAS Coaching in Meerut

UPSC Coaching Classes Meerut

Institute for IAS preparation in Meerut

Best PCS Coaching Institute Meerut

Best IAS Coaching Institute Meerut

Top Ranking IAS Coaching Center in Meerut

IAS Institute Meerut

PCS Coaching in Meerut

Top IAS Coaching Centre Meerut

Hi Thanks for sharing the information

ReplyDeleteB Schools in Kerala

Business Schools in Kerala

Best Business Schools in Kerala

MBA Colleges in Kerala

Top business schools in Kochi

Top b schools in Kochi

Best MBA Colleges in Kochi

B Schools in Kochi

Top MBA colleges in Kochi

Best Physics Class in Patna

ReplyDeleteBest Physics Class in Bihar

Top Physics Class in Patna

Top Physics Class in Bihar

Best Chemistry Class in Patna

Best Chemistry Class in Bihar

Top Chemistry Class in Patna

Top Chemistry Class in Bihar

Best Maths Class in Patna

Best Maths Class in Bihar

Top Maths Class in Patna

Top Maths Class in Bihar

Best Biology Class in Patna

Best Biology Class in Bihar

Top Biology Class in Patna

Top Biology Class in Bihar

Top Physics Class for 11th in patna

Top Physics Class for 12th in patna

Top Maths Class for 11th in patna

Top Maths Class for 12th in patna

Top Biology Class for 11th in patna

Top Biology Class for 12th in patna

Top Chemistry Class for 11th in patna

Top Chemistry Class for 12th in patna

Best Physics Class for 11th and 12th Board in patna

Best Chemistry Class for 11th and 12th Board in patna

Best maths Class for 11th and 12th Board in patna

Best biology Class for 11th and 12th Board in patna

Best Physics Class for IIT in Patna

Best Physics Class for Medical in Patna

Best Physics Class for NEET in Patna

Osh State Medical University,

Asian Medical College,

Jalalabad State Medical University,

Kyrgyz State Medical Academy,

kyrgyz-Russian Salvic State Medical University,

International School of Medicine

ReplyDeleteHere is the list of best free and paid Windows 10 apps that you should definitely use,

especially if you are using Windows 10 laptop or Apps for PC.